Chapter 2, Packet 1: Algebra Proofs

In today's lesson, you will be ready for a quiz when you can:

Learning Targets:

- 1. Solve basic algebra equations (get the variable by itself).
- 2. Explain which math rule you use each step of the way.

What is a proof? People often think proofs are very complicated, but they really aren't. A proof is just when you solve a problem, but there's a catch...every time you do a step, you have to write down which math rule allowed you to do the step. When you do that, you are doing a proof.

Because Algebra proofs are easier than Geometry proofs (because you already had a whole year of it), we will do Algebra proofs first. Here's the basic Algebra rules:

Name of the Reason:	What it looks like:	Where to use it:
Reflexive Property	a = a	Use to "recycle" a number.
		(will be used a lot in chapter 4!)
Symmetric Property	if $a = b$	Use to reverse the direction of an
	then $b = a$	equation.
Transitive Property	if $a = b$ and $b = c$	Use when showing that all three parts
	then $a = c$	are equal.
Addition (and Subtraction) Properties	if $a = b$	Use when adding (or subtracting) the
	then $a + c = b + c$	same number on both sides of the
		equation.
Multiplication (and Division)	if $a = b$	Use when multiplying (or dividing) by
Properties	then $ac = bc$	the same number on both sides of the
		equation.
Substitution Property	if $a = b$	Use when combining like terms. <i>Use</i>
	then a can be used instead of b	this whenever you are "cleaning up" a
		problem.
Distributive Property	a(b+c) = ab + ac	Use when multiplying to remove
	, ,	parenthesis.

Here's an example of an algebraic proof:

Statements $2(2r+5)+1=5-2(3-r)$	Reasons Given
4r + 10 + 1 = 5 - 6 + 2r	Distributive Property
4r + 11 = -1 + 2r	Substitution Property
4r - 2r + 11 = -1 + 2r - 2r	Subtraction Property
2r + 11 = -1	Substitution Property
2r+11-11=-1-11	Subtraction Property
2r = -12	Substitution Property
$\frac{2r}{r} - \frac{-12}{r}$	Division Property
$\frac{-2}{2} = \frac{-2}{2}$ $r = -6$	Substitution Property

We only need to write the *name* of the reason since we are all using the same list. It saves us time when we all have the same set of reasons to use. Directions: In each of the following algebra problems, provide the reason that matches each step.

1. Statements	Reasons
3x + 7 = 13	Given
3x + 7 - 7 = 13 - 7	
3x = 6	
$\frac{3x}{3} = \frac{6}{3}$	
x = 2	

2. Statements	Reasons
$\frac{t-6}{7} = 8$	
$7\left(\frac{t-6}{7}\right) = 7(8)$	
t - 6 = 56	
t - 6 + 6 = 56 + 6	
t = 62	

3. Statements	Reasons
3(x-5) = -6	Given
3x - 15 = -6	
3x - 15 + 15 = -6 + 15	
3x = 9	
$\frac{3x}{3} = \frac{9}{3}$	
x = 3	

4. Statements	Reasons
$\frac{x+y}{c} = d$	
$c\left(\frac{x+y}{c}\right) = c(d)$	
x + y = cd	
x + y - y = cd - y	
x = cd - y	

For each of the following statements, decide which property it is showing.

5. If t = y and y = k, then t = k

6. If 2x + 4 = 12, then 2x + 4 - 4 = 12 - 4

7. If 5(2x-4) = 40, then 10x - 20 = 40

8. If 12 = 3x + 6, then 3x + 6 = 12

For each of the following algebraic proofs, write the missing steps or reasons. Hint: watch for what changes! What does it take to turn a particular row into the next row?

9. Statements	Reasons
$\frac{1}{3}(x+6) = 7$	Given
$3(\frac{1}{3}(x+6)) = 3(7)$	
	Substitution
x+6-6=21-6	
	Substitution

10. Statements	Reasons
$10\left(t-\frac{3}{5}\right) = 8$	
$\frac{10\left(t-\frac{3}{5}\right)}{10} = \frac{8}{10}$	
$t - \frac{3}{5} = \frac{8}{10}$	
$t - \frac{3}{5} + \frac{3}{5} = \frac{8}{10} + \frac{3}{5}$	
$t = \frac{4}{5} + \frac{3}{5}$	
$t = \frac{7}{5}$	

11. Statements	Reasons
7(x-3) - 2 = 5	Given
7(x-3)-2+2=5+2	
	Substitution
7x - 21 = 7	
7x - 21 + 21 = 7 + 21	
7x = 28	
	Division
	Substitution

12. Statements	Reasons
6(2x - 3) = -9	
	Distribute
	Addition
	Substitution
	Division
$x = \frac{3}{4}$	

Your turn! For each of the following algebraic proofs, write each step and the justification that matches. You are given a blank table without any rows marked, so create as many rows as needed.

13. Given: 2(x-3) = 6

Prove: x = 6

Statements	Reasons

14. Given: $4\left(2x + \frac{3}{4}\right) = 35$

Prove: x = 4

Statements	Reasons